Adaptive Smith Predictive Control of Non-Linear Systems Using Neurofuzzy Hammerstein Models

نویسندگان

  • José M. N. Vieira
  • Alexandre Manuel Mota
چکیده

This paper proposes an Adaptive Smith Predictor Controller (ASPC) based on Neuro-Fuzzy Hammerstein Models (NFHM) with on-line non-linear model parameters identification. The NFHM approach uses a zeroorder Takagi-Sugeno fuzzy model to approximate the non-linear static function that is tuned off-line using gradient decent algorithm and to identify the linear dynamic function it is used the Recursive Least Square estimation with Covariance Matrix Reset (RLSCMR). This algorithm has the capability of follow fast and slow dynamic parameter changes. The proposed ASPC has special capabilities to control non-linear systems that have gain, time delay and dynamic changes through time. The implementation of the ASPC is made in two steps: first, off-line estimation of the non-linear static parameters that will be used to “get linear” the non-linearity of the system and second, on-line identification of the linear dynamic parameters updating direct and inverse models used in the ASPC. As an illustrative example, a gas water heater system is controlled with the ASPC. Finally, the control results are compared with the results obtained with the Smith Predictive Controller based in a Semi-Physical Model (SPMSPC). 1 This work was supported in part by the Portuguese Government through the PREDEP program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Model-Reference Adaptive Control using Associate Memory Network

Model-reference adaptive control with neurofuzzy methodology is derived in this paper. Associate memory network(AMN) is investigated in detail to be the possible implementation as the direct self-tuning nonlinear controller. The essence of the neurofuzzy controller has been discussed and the local stability of the system is reached. The performance of the model-reference adaptive neurofuzzy con...

متن کامل

Cone Crusher Model Identification Using Block-Oriented Systems with Orthonormal Basis Functions

In this paper, block-oriented systems with linear parts based on Laguerre functions is used to approximation of a cone crusher dynamics. Adaptive recursive least squares algorithm is used to identification of Laguerre model. Various structures of Hammerstein, Wiener, Hammerstein-Wiener models are tested and the MATLAB simulation results are compared. The mean square error is used for models val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004